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(d) Note that —2 <sin(2") + (—1)™ cos(2™) < 2 for all natural numbers n. Therefore,
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(a) Let P(n) be the statement that ”a, < 3”.

e When n =1, a; =1 < 3. Therefore, P(1) is true.

e Suppose P(n) is true for some natural number n, i.e. a, < 3.
Then,
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Therefore, P(n + 1) is true.

By mathematical induction, a,, < 3 for all natural numbers n.



(b) Let P(n) be the statement that "a,11 > a,”.
e Whenn =1, ap = % > 1 = ay. Therefore, P(1) is true.

e Suppose P(n) is true for some natural number n, i.e. a,41 > ay.
Then,
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Therefore, P(n + 1) is true.

By mathematical induction, a,41 > a, for all natural numbers n, i.e. {a,} is a monotonic

increasing sequence.

By the monotone convergence theorem, {a,} converges and we let lim a,. Then,
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Therefore, lim a, = 3.
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(a) Let P(n) be the statement that T <7
nl —n

e When n =2, LHS = RHS = 2. Therefore, P(2) is true.

e Suppose P(n) is true for some natural number n > 2, i.e. ;T: < %
Then,
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Therefore, P(n + 1) is true.
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By mathematical induction, — < — for all natural numbers n > 2.
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(b) Note that for any natural numbers n > 2, 0 < 27% < %.

Also, lim 0 = lim 4 =0.
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4. By considering T < T < i forr=1,2,3,---,n, we have
1 1 1
< <
Vn24+n T Vn2+1 7 Vn2+1
1 1 1

< <
V2 +n T Vn2+2 7 Vn2+1

1 < 1 < 1
VnZ+n T Vn24+n T VnZ4+1
Summing up all the above inequalities, we have
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Therefore, by the sandwich theorem,
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(b) Let P(n) be the statement that "0 < x,, < y,,”.

Tn+l — Ynt1 =

e Whenn=1,0<2=ux; <8=y,. Therefore, P(1) is true.
e Suppose P(n) is true for some natural number n, i.e. 0 < z,, < y,,. Then, 25 —y3 <0
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Therefore, P(n + 1) is true.

By mathematical induction, 0 < x,, leqy,, for all natural numbers n.

Hence, for all natural numbers n, we have
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Therefore, {z,} is a monotonic increasing sequence and {y,} is a monotonic decreasing se-

quence.
For any natural number n, 2, <y, < yp—1 < --+ < y; = 8. Therefore, {z,,} is bounded above
by 8. By the monotone convergence theorem, {x,} converges.

(Caution: We cannot say that ”For any natural number n, x,, < y,, so {x,} is bounded above

by y,” because y, is not a fixed number.)

Similarly, for any natural number n, y, > z, > x,—1 > -+ > x1 = 2. Therefore, {y,} is

bounded below by 2. By the monotone convergence theorem, {y,} converges.

Now, let X = lim x, and Y = lim y,. Then,
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so X =Y or X = 0. However, {z,} is monotonic increasing and z; = 2 which implies that
X cannot be 0.

Therefore, X =Y, ie. lim z, = lim y,.
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For any natural number n,
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Therefore, z,yn, = Tp—1Yn—1 = -+ = T2y2 = x1y1 = (2)(8) = 16 which is a constant.

Now, we have
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